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Abstract 
This report describes an electromagnetic Physical Pong game that was built as the final project 
from group four in ECE 3710. It encompasses several stages of development. If followed 
correctly, it can be replicated and built from the ground up. The purpose of building this project 
was to gain experience in different ways: building a CPU and creating instructions to design 
something out of them, working on a project that simulates a real life job with a hard deadline, 
and practice verbal presentation skills to present to those who are interested in learning about it 
or replicating it. The design of Physical Pong included a mechanical board with moving parts 
that acted as a visual representation of the game. This representation was controlled by game 
logic that was designed from the ground up. The game logic was then translated from machine 
instructions that were designed throughout the semester into binary which was stored in 
memory. The designed CPU was then able to compute the correct logic and transmit data to the 
arduino. After this overall design section, things that were learned throughout the process of 
creating this project will be discussed in depth which will involve any future changes that may be 
made, as well as hopefully giving guidance to those who may decide to replicate it, and finally 
followed up by a conclusion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Introduction 

The goal of this project was to construct a fully functional physical pong game. The idea 
of the project was to take the classic pong video game and convert it to a mechanical game. It 
makes use of an Arduino, an FPGA board, 3D printed parts, and core game logic. First, a CPU 
was designed to run the game. This CPU is based off of the CR-16 architecture and uses 
opcodes that are shown in Appendix A. To control the game, rotary encoders are used as inputs 
to the CPU, and UART serial communication is used to send serialized messages to an Arduino 
controlling stepper motors. The mechanical design of the board consists of a magnetic ball 
piece that slides on a glass panel and two player paddles. The structure is held together by 
other 3D-printed parts that make it lightweight and stable. Lastly, the game was programmed in 
assembly, which was then processed by the assembler to translate every instruction into binary. 
These instructions were then stored into memory and ran on the CPU. The details of these 
different modules are described in the following sections.  
 
CPU Design 

The central processing unit design for this project was modeled after the CR16 
architecture — a 16-bit reduced instruction set computing architecture. The CPU was designed 
and programmed using Verilog code, and uploaded onto a Cyclone V field-programmable gate 
array. The CPU was designed incrementally by combining individual modules into one overall 
design. The main components of the CPU are described in the following paragraphs. 

The arithmetic-logic unit was one of the first modules designed in this project. It takes in 
two 16-bit inputs, A and B, and computes a 16-bit output, C, based on the opcode. The ALU 
supports the full list of opcodes shown in Appendix A. The ALU module also sets the five-bit 
flags module that is used by other parts of the CPU. Next, the 16-bit regfile was implemented. 
This consists of 16 registers that are used to store values in the CPU. The regfile connects into 
the inputs of the ALU. The next module designed was a memory access interface. This module 
makes use of the built in block ram on the FPGA. Specifically, the module was dual BRAM 
which allows for two separate read and write ports. The memory access module is also used to 
store instructions that run on the CPU. The memory is initialized by reading a text file containing 
newline separated binary instructions and storing them into memory.  

The next step was to design a program counter. The program counter module was used 
to keep track of the current instruction in memory. After each instruction completed, the PC 
either incremented to the next address in memory, or in the case of a branch instruction moved 
to the requested jump address. The output of the program counter is tied directly to the address 
input of the memory module. The instruction that is read from memory is passed directly into an 
instruction register before it is passed on to the instruction decoder module. The instruction 
decoder was designed to split a 16-bit instruction into an 8-bit opcode, a 4-bit source register 
value, and a 4-bit destination register value for R-type instructions, or into a 4-bit opcode, 4-bit 
destination register value and an 8-bit immediate value for I-type instructions.  

The next step was to design a finite state machine to control the processor. The CPU 
FSM is one of the most important components in the design. The finite state machine sets all of 
the control wires used throughout the CPU. This helps control the program counter, reading 
from and writing to memory and the regfile, and selecting which values should be passed 



through various multiplexors. The FSM is what allows all of the individual modules in the CPU to 
function as one.  

The next step was to implement new modules specific to the needs of this project. This 
included a module for UART serial communication, a module for reading rotary encoder values, 
and two modules for a VGA display. These modules were designed and tested individually, then 
they were integrated into the CPU. These modules are described in further detail below. The 
overall RTL schematic for the CPU design is shown in Appendix B. 
 
IO Interfacing 
 

UART Communication 
To allow the CPU to be able to communicate with external devices a communication 

method had to be selected and implemented. For this project the common protocol known as 
universal asynchronous receiver transmitter or UART was chosen. This communication method 
is asynchronous meaning that it allows for data to be transmitted independent of the clock cycle 
of the device. It works through a few different steps. For this system since data is only required 
to travel in one direction from the cpu to the arduino the primary focus was on the design of the 
transmitter within verilog. As for the receiver the arduino’s built in serial receiving port was 
utilized to allow for simple one way communication. 

When designing the transmitting module it had to be considered how data was set up to 
be received on the arduino. The default mode of serial communication on arduino consists of 
one start bit, followed by eight bits of data to form one byte, followed by one stop bit and no 
parity. Additionally both the receiver and the transmitter have to agree on a bits per second rate 
or baud rate. For this system it was decided to use the standard baud rate of 115200. This baud 
rate was recreated in the verilog module by dividing the input clock signal by the baud rate to 
calculate the number of clock cycles each bit should last. In addition to the clock input the 
verilog module also has an eight bit data input and one bit activation signal. The clock is also 
used to constantly sample the data wire to check for new data. The one bit serial output of the 
module is driven high to one by default. When the activation signal is flipped to high the module 
begins going through its transmitting procedure. First the serial line is driven to low for one bit 
length. At the same time whatever value is on the incoming data wire is stored into a temporary 
eight bit register. After the start bit has completed the module goes through the data loaded into 
the temporary register and transmits each one by one for the agreed upon bit length. Once all 
eight bits have been sent the module sends one final stop bit by driving the output back to high 
for at least one bit length in order to prepare for future transmissions.  

In order to use the transmitter with the pong game, a transmit instruction was integrated 
into the main CPU data path. The transmit instruction reads data from a register and transmits 
that data to an Arduino using the UART serial protocol described above. The Arduino accepts 
incoming serial data at a much slower rate than the CPU on the FPGA is capable of sending. To 
support this, the transmitter module in the CPU has to wait a certain number of clock cycles, 
which was calculated by dividing the CPU clock speed by the desired baud rate. At first there 
were issues in the CPU where another transmit instruction would begin execution before the 
previous transmission was completed. This resulted in lost data. To account for this, a control 
signal was added as an input to the FSM that was high if data was being actively transmitted. If 



a new transmit instruction is received while a transmission is still in progress, the CPU FSM 
enters a sort of NOP state where the program counter does not update and execution pauses 
until the current transmission is completed.  

 
 

Rotary Encoders 
Another important aspect of the hardware interfacing for this project involved the use of 

rotary encoders to receive data from the players about how they wanted to move their paddle. 
These encoders had two primary functions. Their first function was to determine which way they 
were currently being rotated by the player. They achieved this by having two different wires 
sending 90 degree out of phase signals. The difference in phase between these two signals was 
read by a verilog module and used to determine the position change. This verilog module will be 
elaborated upon further in the next paragraph. The other function the rotary encoders served 
was as a button. When connected to power the encoder button would send a high signal by 
default. If the encoder was pressed down upon however the signal would be driven low to signal 
a button press. A basic module was developed that took in both rotary encoder button signals 
and ANDed them together. This module would only produce a one if both buttons were pressed 
at the same time and was used within the game to allow both players to signify they were ready 
to play. 

 
 

With the encoders now properly sending signals to the FPGA the next step was to 
develop a module capable of decoding and utilizing those signals. This was achieved by utilizing 
a few d flip flop modules connected to two xor gates. The flip flop modules were connected to 
the CPU clock which was faster than the clock of the encoder signals. This was important 
because the clock needed to be faster than the incoming signals in order to “oversample”. 



These two flip flops were also connected to input wires A and B coming from the encoder and 
each generated a signal that was delayed by one clock cycle from the incoming signal. Finally 
the undelayed A signal and the delayed B signal were connected to the first xor gate while both 
the delayed and undelayed A and B signals were attached to the second xor gate. The first xor 
gate then produced output count direction that was one if the encoders were turned positive and 
zero if they turned negative. The second xor gate meanwhile was positive if the two signal wires 
were offset and changing and zero if they were equivalent. This allowed it to serve as an enable 
wire and detect if the encoder was moving or not. Finally these two inputs were fed into a 
register that would activate with the enable wire and increase if the direction was positive and 
decrease if it was zero. This allowed the register to keep a running count of the change in 
position of the encoder. For the final step two of these modules were instantiated so each 
encoder would have its own module. The two count register outputs were then fed into a mux 
that allowed selection between which encoder value was desired. This mux was controlled by 
the FSM which also controlled a mux within the ALU datapath allowing external encoder data to 
be read into a register. When the FSM detected a custom designed encoder read instruction it 
would select the proper encoder value to pull from, enable external data to be fed into the 
datapath, and select and enable an appropriate register to write into. Finally after all of this was 
done the FSM would send a reset signal to the encoder that was read from that reset the 
encoder count back to zero. This was important because it allowed the count value within the 
encoder module to only record the change in position from the last time it was sampled as 
opposed to holding the absolute position value. The code was designed in such a way that it 
only needed the encoder to record the change in their position so that it could be used to 
compute the overall paddle position.  

When implementing the encoders into the CPU data path, some errors were 
encountered. The encoder module reads in a count from the encoder as an 8-bit value. 
Originally, this value was not sign extended before being stored into a 16-bit register. This 
caused undefined behavior when the encoder values were used in a larger program. The error 
was very subtle because the lower eight bits in the register always had the correct value, but 
when used with compare and branch instructions, the undefined upper eight bits caused 
unexpected behavior. Another minor error with the encoders had to do with the wiring. 
Sometimes noise from high current motor wires causes improper encoder values to be read by 
the FPGA. This was resolved by separating the wires for the rotary encoders from the motor 
wires. 
 

VGA 
Another component of the design was a scoreboard displayed on a VGA monitor. This 

involved adding two modules to the CPU data path. One module controls the VGA display. The 
other module, known as the bit generation module, determines the colors of the pixels that are 
displayed. In this implementation, there were no glyphs stored in memory. Simple rectangles 
were drawn by using if statements to check a region defined in an X and Y coordinate grid. 
Each X and Y coordinate represents a single pixel on the screen which has a 640x480 
resolution. To make displaying the score easier, the VGA bit generation module was designed 
to act as two seven segment displays. The module takes a seven-bit input for each score, and 



each bit corresponds to a segment of the score on the display. The code snippet below shows 
how a single segment is drawn.  
 

 
 
In the CPU data path, the scoreboard is implemented by connecting two registers to the 

VGA bit generation module each through a BCD to seven segment converter. These registers 
always store the players' scores in the game, and are updated in the game code. This 
implementation allows the scores to update instantly on the screen after a player scores. The 
complete score board display is shown in the figure below. 

 

 
 

Buttons, Switches and Seven Seg Displays 
One final hardware interfacing method that was used were buttons and switches built 

into the FPGA board. There were a few different functions each of them served. One button on 
the board was directly connected to the reset input on the FSM of the CPU. By pressing this 
button the game would be hard reset and clear the players score. Another useful input on the 
board were the 10 switches located under the seven segment displays. When the game logic 
was being considered one question was how to control both the game difficulty as well as the 
initial starting direction of the ball as it was served. Due to the complexity of developing a 
random number generator, a simple solution was considered of using the switches to allow the 
players to input their desired speed and starting conditions. The leftmost five switches were 
used to generate a five bit value for initializing the dx value while the rightmost five switches 
could be used to initialize the dy value. Before each serve of the game the players could flip the 



switches and change the difficulty for that round. After implementing this however it was realized 
that it was becoming a hassle to have to mentally convert the speed desired into an equivalent 5 
bit binary representation. So to make this simpler  the seven segment displays on the board 
were used to display what the current initialization value was set to. Using the previously 
developed bcd to seven segment display modules the bcd input was hardcoded to the current 
switch value while the outputs were wired to the left and right center seven segment displays. 
Thus as the switches were flipped the actual value being input was now shown on the display in 
hex which made it much simpler to quickly set the desired speed and difficulty level.  
 
 
Mechanical Design 

The physical pong board was designed in its entirety in 3D modeling software. For this 
project, Onshape was utilized to create all of the subparts, and to model physical parts such as 
motors, glass panels, rotary encoders, and switches. From these subparts, subassemblies were 
created that model parts like a paddle gantry, which would then be put together into larger 
assemblies until the full design was reached. This process flow allowed for minimal clearance 
and dimension mistakes once manufacturing took place. All pieces were custom designed from 
scratch, and manufactured on a Prusa i3 Mk3 3D printer from PLA filament. In total, around 1.5 
pounds of plastic were used. Shown below are some of the assemblies created. 

 
The moving parts are based on Openbuild’s v-rail system. These are a collection of 

aluminum extrusions (similar in shape to 2020 t-slot), with complementary plates and wheels 
that allow for smooth movement along the edges of the rails. For this application, the wheel 
spacing patterns were recorded from standard v-rail gantry plates, and used to create custom 
paddles and ball movement plates. Each paddle assembly consists of a nema-17 stepper motor 
with limit switch, a v-rail extrusion, a moving paddle, and an idler. From these parts, a gt2 belt is 
anchored on one end of the paddle, routed around the motor pulley, around the idler, and then 



to the other end of the paddle to be anchored. Belt tensioning is handled by a built-in belt clip in 
the paddle.  

 
Ball movement is handled through a two-axis gantry system. Y movement is handled by 

a triple-wide v-rail with a wide gantry plate that mounts the X rail. The positioning of the Y 
movement is such that the center of mass of the assembly is over the plate, hence the offset 
appearance. The x movement is similar to a paddle assembly, but instead of a visible part 
moving, the gantry moves two oppositely polarized magnets. The visible ball has an identical 
magnet pattern flush on the bottom. This allows a piece of 0.125” glass or acrylic to be mounted 
between the ball movement system and the ball while maintaining movement. 

 
To mount the rotary encoders, a plate was designed that matches the outside thread of 

the encoder, and has a countersunk nut pocket. The plate mounts to two brackets that screw 
into the back of each paddle assembly using t-nuts - rectangular nuts that fit into the extrusion 
and allow sliding mounts. Knobs were designed for each encoder that have a d-shaft extrusion 
hole to capture the encoder, and embossed edges for better grip. 



 
Finally, the glass sheet is supported by two types of components. As seen above, the 

encoder brackets have a slot for the glass below the mount point to the paddle assembly. These 
two points on either side of the board are not enough to prevent the glass from sagging and 
interfering with the ball adhesion, so additional T-shaped mounts were designed. Six were 
created in total, and three are mounted on each side of the board. All parts were then mounted 
to a base board made of wood using M5 bolts. 
 
Software 

Assembler 
An important piece of this project was the assembler that translates written assembly 

code into binary machine instructions that are loaded into memory and run on the CPU. The 
assembler was programmed in Python because it offers a lot of easy to use functions for 
parsing text files. The assembler simply takes in a text file containing assembly code 
instructions and outputs another file containing newline separated binary instructions. The 
assembler supports all of the instructions included in the instruction opcode table in Appendix A. 
The assembler can also handle comments preceded by the ‘#’ character, blank lines, and jump 
labels preceded by a period character. To make the game code easier to develop, custom 
variable names were mapped to certain registers. For example, the x-position of the pong ball in 



the game is always stored in the R7 register. The assembler was updated so that the name ‘X’ 
now refers to the R7 register value. An example of a simple program is shown below. This 
program shows the required format of the assembly code, and the result of the assembler 
translation.  
 

 
 

Game Logic Design 
To create the game logic, the first step was researching different variations of pong 

online to either replicate that code or to get a feel of what the game logic needed to be. What 
was found online was not really suitable for this project since it was written in html, java or some 
other IDE. These types of languages involve drawing in a graphics panel of some sort, which 
was something that differed quite a bit from what the goal was. In the end, it was decided to 
ditch the idea of implementing something online, and the code for this project was written from 
scratch.  
 

To start, the first challenge was to think about what kind of logic pong has. There are 
three main things in the original pong game: a paddle for player 1, a paddle for player 2, and the 
ball that moves between the paddles during the game. Being a simple game there is not much 
to it. First, it was decided how the game needed to begin. This involved toying with ideas on 
who the ball was going to be directed towards, and where the ball will start on the actual 
beginning of the game and during the reset stage after someone scores. Where the ball will 
start is an easy answer: just move it back to the middle of the board, which is what was done. 
To decide who the ball goes to was a different question. One of the reach goals was to 
implement a random number generator to decide who the ball was going to head towards at the 
very start of the game. When either player 1 or player 2 scored, the ball would just head to 
whoever did not score to keep it simple. Unfortunately, this group was not able to create a 
random number generator in the allotted time but that may be something that could help make 
this project better.  
 

The ball starts in the middle during the start stage of the game, as well as during the 
reset stage when either player scores. Currently, the ball just heads towards one player or the 
other since a random number generator was not yet created. To expand upon what was needed 



in the reset stage, it was also decided that whoever scored gained a point so during this reset 
stage the player who scored is also awarded a point. The last thing that was needed during this 
stage, was to know when to start again. A waiting loop was implemented that took input from 
both the rotary encoders (they can be pressed down) and once both rotary encoders are 
pressed, the game goes from the reset stage to a running stage. This means the reset stage 
only involves moving the ball back to the center, incrementing the score of who scored by one 
point, and then waiting for the game to start again once both players are ready. This kept the 
reset stage simple which is both good to change it if needed, and good for the players on the 
other end.  
 

For the main game loop there were several things to consider: paddle movement, paddle 
collision with the walls (done in Colin’s part), ball movement, and ball detection with both the 
paddles and the walls. Incrementally adding code to see if it would work on the physical board 
was crucial during this part of development. The whole game board was represented by an 8 bit 
by 8 bit game space, so the ball was made to move from -127 to 127 in both the X and the Y 
directions. As far as the paddles go, they can only move in one direction so they can move from 
-127 to 127 in only that direction (it is arbitrary but paddles are technically the Y axis).  
 

To represent ball movement a variable was stored in a register for the velocity in the x 
direction called “ballDx” and a variable was stored in a register for the velocity in the y direction 
called “ballDy”. The x and y position of the ball stored in a register as well. Since the board was 
2 feet by 3 feet physically, and the gamespace is an 8 bit by 8 bit virtual space, an arbitrary 
direction was scaled so the ball was able to move constantly throughout the game. In the main 
loop of the game logic, the velocity of the ball in the x direction was added to the x position, and 
the same for y. This was done in assembly code, so there were a few manipulations of registers 
and then a simple ADD instruction to add the velocity to the position. This happened every 
iteration of the game loop to constantly move the ball in the physical board.  

 
To detect ball and wall collisions was simple. Referring to the diagram below, all that is 

needed to do is check the x position and the y position of the ball. There are four separate 
cases to check for: if x is greater than 127, if x is less than -127, if y is greater than 127 or if y is 
less than -127. (Note: to detect collisions with paddles, these values change slightly, but the 
logic is technically the same). These checks are done using our CMP/CMPI opcodes that were 
created, then branch to another instruction if these ‘if’ statements trigger. If x is greater than 127 
or less than -127, simply negate dx (velocity of the ball in the x direction), if y is greater than 127 
or less than -127, then negate Dy (velocity of the ball in the y direction). To negate either of 
these values, they are moved to a temporary register (i.e. MOV dx, R1), the velocity is set to 0 
(i.e. XOR dx, dx), and finally the respective value is set by subtracting and storing back into 
Dx/Dy (i.e. SUB R1, dx). This allows the code to be kept clean and simple, and it does exactly 
what is required.  



 
Paddle positions were kept as absolute values. That is, referring to the diagram below 

(the diagram with the ball omitted to keep the diagram clean), the dot in the middle of each 
paddle is their exact position. If the board size was 2 feet (24 inches) by 3 feet (36 inches), a 
simple ratio was created to map the size of it to a virtual space.  Doing some math to figure out 
the amount of offset needed for paddle collision detection, it was determined that the length of 
the paddle is about 7 units in the virtually mapped space, and the width of the paddle was about 
40. From here it was decided to break up paddle detection into three different scenarios 
depending on where the ball hit the paddle. The first check was whether or not the y value of the 
ball was greater than p1/p2 position + 26 or less than p1/p2 position -26. If it is outside of the 
paddle range, then the x value of the ball is checked. Referring to the diagram below, if x is less 
than or equal to -120, p2 would score, if x is greater than or equal to 120, p1 would score. Now, 
if the ball’s y value is inside the paddle range (i.e. less than p1/p2 + 26 and greater than p1/p2 - 
26) the x value is checked. If x is greater than or equal to 120 or less than or equal to -120, then 
the ball simply bounces off the paddle.  
 

To keep the game interesting, the ball was made to bounce off the paddle in different 
ways depending on where it hit the paddle. Assuming the ball is inside of the range of the 
paddle, there are three spots to check where the ball hit: in the middle of the paddle, on the 
rightmost side of the paddle, or on the leftmost side of the paddle (each of the bounces simply 
negates the Dx value of the ball the same way as discussed earlier). If the ball hits on the left 
side, the y velocity of the ball is slowed down, and if the ball hits on the right side, the y velocity 
is sped up. This allowed for variation depending on where the ball hit. The ball could never be 
below 0 speed, and could never move faster than 16 units in the x direction and 11 units in the y 
direction during any iteration of the game loop. Once this was completed, the logic was done 
and the game was able to be played.  
 



 
 
 
Overall System Integration 

This section provides a general overview of the project and how the different 
components explained above connect. The primary input is read from the two rotary encoders 
which are read in by the encoder module on the FPGA. The encoder module ties into the CR-16 
CPU where the input is handled by the game software stored in memory. Also connected to the 
CPU is the UART serial communication module that is used to transmit data, specifically ball 
and paddle positions, to the Teensy Arduino. The Arduino then connects to and controls four 
stepper drivers. The stepper drivers then move their corresponding stepper motors to the 
desired positions. The overall block diagram of how the project is connected is shown below.  

 



Testing and Verification 
A large portion of time was allocated to the testing and debugging of this project. With 

the integration of game logic software, Verilog code, and a mechanical system, testing was a bit 
of a challenge. The testing of this project could be broken into three groups. These include 
testing of Verilog models and the CPU, testing hardware components and I/O interfacing, and 
testing the software used to run the pong game. Each category is described in further details 
below. 

First, it was important to test the Verilog code that made up the CPU. As stated above, 
the CPU was designed incrementally. During this process, each module had to be tested 
individually before it could be integrated into the overall design. To accomplish this, test 
benches were written in Verilog and tested in ModelSim. The next step was to test the overall 
CPU design as each component was added. For this testing, the same same test bench was 
reused and overwritten to adapt to the updated CPU. When testing individual modules, print 
statements were useful to easily verify a module’s behavior. However, when testing the 
integrated design, waveforms were used instead of print statements. The waveforms made it 
possible to view values of internal components of the CPU that were not direct inputs or outputs 
of the top level module. This was very useful for checking values stored in individual registers, 
verifying the state of the FSM, and checking any relevant control wires. Towards the end of the 
design, the CPU was tested by writing very simple programs in assembly. The programs were 
assembled, stored in the memory initialization file, and ran in the test bench to verify the 
behavior of the CPU. 

Another important category was the testing and debugging of hardware and I/O 
interfacing. Testing these components involved a lot of small adjustments and observations. For 
example, testing the UART transmitter involved uploaded simple programs with expected 
behavior and observing the result on the Arduino serial monitor. When testing the rotary 
encoders, the most effective method was reading in the encoder values to the FPGA, 
transmitting them to the Arduino, and reading the values as the encoders were rotated. The 
hardware debugging also entailed verifying many wire connections. The mechanical system 
also required a substantial amount of testing. Numerous small adjustments were made until the 
system was running smoothly. 

Next, testing the game software was required to ensure the game performed as 
expected. An important part of this was testing the assembler that translates the written code 
into bytes that are stored in memory. This was tested and verified with every instruction used in 
the game code. As described in the game logic section, code was incrementally tested and 
implemented in the project. Starting off with the ball movement, we thoroughly tested different 
velocities of the ball and hand picked speeds that were not jittery (where game logic was 
updated too fast for the arduino to transmit) as well as speeds that were not too slow (where 
game logic had too much busy looping each iteration). After ball movement, we moved towards 
getting the ball to bounce off walls using logic that was discussed in the game logic section. 
Once we were able to bounce off walls, we used the same logic with slight modifications to get 
the ball to bounce off the paddles. Incrementally testing the code allowed us to make sure one 
thing at a time was working which allowed us to slowly build the project from the ground up.  
 
 



 
 
Conclusion and Future Work 

The physical pong demonstration was a great opportunity to practice engineering skills in 
CPU design, hardware interfacing, mechanical design, and assembly coding. A CR-16 CPU 
implementation required concrete knowledge of single-cycle computer design, and IO 
interfacing required intuition strong enough to modify the design for new functionality while 
maintaining function. This was also an exercise in precision and testing, as any bugs in the ALU 
could be discovered in final programming if testing was not thorough enough. While the final 
project has a fair amount of extra work to be done before it could be a commercially viable 
product, it is an impressive and robust demonstration of what is possible in this amount of time. 

 In future revisions, there are a few key areas to improve upon. The most important of 
which is closed-loop collision detection. Currently, a position is calculated in the game logic 
based purely on CPU calculations. This ball position is capable of moving much faster than what 
the physical motor configuration can support. This creates a situation where the ball is “lagging” 
behind where the game logic places it. The most obvious symptom of this is when a ball 
collision happens in the game logic that looks out of place with the current position of the ball 
and paddle. For example, if a player moves the paddle very quickly at the last second before 
contact with a paddle, the game logic (controlling the collision detection) will move the paddle 
instantly while the physical paddle lags behind. The virtual paddle could be beyond the ball, 
while the physical paddle is directly on the ball, and the collision would still fail in the game logic 
despite it looking visually correct. This, and many other synchronization issues, can be fixed by 
calculating collision logic with current physical positions - instead of commanded virtual 
positions. One way to implement this would be to create a serial receiver in the CPU datapath, 
which would receive the most current physical positions of the ball and paddles, these values 
could then be used for collision detection and other game attributes. Another area to improve 
upon is wiring and mechanical stability. Transportation of the current demonstration requires two 
people to move, and ideally integration with a more sturdy case like a coffee table would be a 
more suitable final product. Wiring - particularly on moving parts - could use improvement with 
cable guides, and guide chains for these moving linkages.  
 
 
  



Appendix A 
 

Instruction Op Code Comments 

ADD 00000101  

ADDI 0101XXXX  

ADDU 00000110  

ADDUI 0110XXXX  

ADDC 00000111  

ADDCI 0111XXXX  

ADDCU 00000100 Custom #1 

ADDCUI 00001000 Custom #2 

SUB 00001001  

SUBI 1001xxxx  

CMP 00001011  

CMPI 1011xxxx  

CMPU/I 00001100 Custom #3 

AND 00000001  

OR 00000010  

XOR 00000011  

NOT 00001111 Custom #4 

LSH 10000100  

LSHI 1000000s s=sign, (5 bit immediate, one 
of which is in the op code -15 
to 15) 

RSH 01001111 Custom #5 

RSHI 10000101 Custom #6 

ALSH 10000111 Custom #7 

ARSH 10001000 Custom #8 



 
  

NOP/WAIT 00000000  

MOV 00001101 Not implemented yet 

LOAD 01000000 Not implemented yet 

STOR 01000100 Not implemented yet 

ENC1 10001100 Custom #9 

ENC2 10001101 Custom #10 

TRANSMIT 10001111 Custom #11 

Bcond 1100xxxx  

LOADSWITCHL 01001010 Technically TBIT 

LOADSWITCHR 01001110 Technically TBITI 

READSTART 01000001 Technically LPR 
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